Translate Family 1

In this activity you will translate a point and compare the motion of the point to the motion of its translated image.

TRANSLATE BY A VECTOR

1. Open geometric functions.org/links/translate-family/. Go to page 2.

- 2. Use the first three tools **Point Vector Translate v** to create a translate function. When you use the Translate tool, be sure to match the end points of the vector correctly, and also match point *x* to point *x*.
 - 3. Drag independent variable \P_x on the screen and observe the behavior of $T_y(x)$.
 - 4. Drag point *v* to make the vector point straight up.
 - **Q1** Turn on tracing and drag *x*. Fill in the blanks below, and draw a picture of the traces for each answer.

	Drag x left	Drag x up
Which way does $T_v(x)$ move?		
Which variable moves faster?		
Draw your traces:		

Q2 In each picture below, arrange the vector as shown and then vary x as shown. Draw the trace that $T_v(x)$ makes in each picture.

TRANSLATE HORIZONTALLY AND VERTICALLY

5. On page 3 use Point and Translate h,v to create a translate function.

For the *Translate h,v* tool, the *v* stands for *vertical*, not *vector*.

Q3 Edit *h* and *v* to make pictures like the ones below. Below each picture, give the value you used for *h*, and the value you used for *v*.

Q4 Explain how you can tell just by looking at the variables whether *h* and *v* are positive or negative.

Q5 Try to find a fixed point for your translate function. (Remember, a fixed point is a place where *x* and $T_{h,v}(x)$ come together at the same time.)

What did you find out?

Names:

TRANSLATE BY ANGLE AND DISTANCE

tools to animate

independent variable *x* around the polygon.

$$\begin{array}{c} r = 5.00 \\ \theta = 45^{\circ} \\ \mathbf{x} \end{array}$$

7. Use **Translate** r, θ to translate x by distance r at angle θ .

Q6 Use these values of *r* and θ to make pictures. Show *x* and $T_{r,\theta}(x)$ in your drawings.

<i>r</i> = 5.00	$\theta = 120^{\circ}$	<i>r</i> = 6.00	$\theta = 330^{\circ}$	<i>r</i> = -4.00	$\theta = 60^{\circ}$

TRANSLATION CHALLENGES

Q7 Solve the challenges presented on each page from 6 through 10, and draw pictures of your solutions below. Draw the vector (if you used *Translate v*) or write down the parameters (if you used *Translate h,v* or *Translate r, \theta*).

